نگاشت های تقریباً حافظ طیف

thesis
abstract

فرض کنیم x و y فضاهای باناخ ابربازتابی و (b(x و (b(y به ترتیب جبرهای باناخ عملگرهای خطی و کراندار روی x و y باشند. اگر (p? b(x) -> b(y یک نگاشت خطی و دوسویی تقریباً حافظ طیف باشد، در این صورت p یک عملگر تقریباً ضربی یا یک عملگر تقریباً پادضربی است. علاوه براین، اگر y = x یک فضای هیلبرت تفکیک پذیر باشد، چنین نگاشتی اختلال کوچکی از یک خودریختی یا یک پادخودریختی خواهد شد. همچنین، پیوستگی خودکار چنین نگاشت های مورد مطالعه قرار می گیرد. به علاوه، با بررسی پیوستگی خودکار نگاشت های خودکار تقریباً ژوردان ضربی یک صورت تقریبی از قضیه کلاسیک هرشتاین ارائه می شود.

similar resources

نگاشت های تقریبا ضربی حافظ طیف روی جبرهای باناخ

در این پایان نامه مفهوم تقریبا ضربی بودن نگاشت و پیوستگی خودکار درحالتی که تقریبا ضربی است را بررسی می کنیم. همچنین چند نسخه تقریبی از قضیه ی گلیسون -کاهان -زلازکو و نگاشت های تقریبا ضربی که نزدیک ضربی هستند را بیان و مطالعه می کنیم. همچنین به بررسی جبرهایی می پردازیم که دارای این ویژگی هستند که $amnm$-جبر‎‎ نامیده می شوند.‏در این پایان نامه ‏بعضی از ویژگی های شبه طیف‏،$amnm$-جفت‎‎‏، ...

یادداشتی بر نگاشت های جمعی حافظ طیف روی c*- جبرها

متیو و رادی [14] ثابت کرده­اند که اگر  ایزومتری طیفی یکانی از c*- جبر یکدار a به روی c*- جبر یکدارb  از نوع i با فضای ایده­آل هاسدورف و کلاً ناهمبند باشد، آنگاه  جردن ایزومورفیزم است. در این یادداشت نشان می­دهیم که اگر یک نگاشت جمعی پوشا و حافظ طیف باشد، آنگاه جردن ایزومورفیزم است بدون فرض اینکه کلاً ناهمبند باشد.

full text

نگاشت های تقریبا حافظ تعامد روی *c- مدول ها

در این پایان نامه به مطالعه ی نگاشت های حافظ تعامد و تقریبا حافظ تعامد در - مدول های فضای ضرب داخلی می پردازیم . درحالت خاص اگر a ،w,v - مدول های ضرب داخلی روی *c- جبر a باشند هر مضرب اسکالر از یک ایزومتری a- خطی، یک نگاشت حافظ تعامد a- خطی خواهد بود . عکس این مطلب در حالت کلی برقرار نمی باشد ولی در حالتی که aشامل k(h) باشد عکس آن برقرار خواهد بود) k(h) بیانگر c* - جبر همه عملگرهای فشرده روی یک...

15 صفحه اول

نگاشت های خطی حافظ شبه طیف و طیف شرطی

در این پایان نامه نگاشت های خطی حافظ ?- شبه طیف و ?- طیف شرطی بین جبرهای باناخ یکدار رامورد مطالعه قرار می دهیم. یکی از نتایج جالبی که به آن می رسیم حافظ طیف بودن نگاشت های حافظ ?- شبه طیف است که در بسیاری از حالات این نگاشت یک یکریختی یکمتر می شود. ابتدا نگاشت های ?-شبه طیف، ?- طیف شرطی، ?- تقریبا ضربی را تعریف می کنیم سپس روابط بین شبه طیف و طیف شرطی یک عضو از جبر باناخ مختلط یکدار را بررسی ...

15 صفحه اول

نگاشت های تقریباً ضربی و نگاشت های حافظ شبه طیف و طیف شرطی

: در این پایان نامه ویژگی های شبه طیف و طیف شرطی اعضای یک جبر باناخ مختلط بحث شده و چند نتیجه در مورد نگاشت های خطی حافظ شبه طیف و طیف شرطی ثابت می شود. در یک قسمت از پایان نامه نیز بحث مختصری درباره ی?- آشفتگی ها و ارتباط بین طیف شرطی در جبر باناخ اولیه و ?- آشفتگی آن ارائه می شود.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

دانشگاه تربیت معلم - تهران - دانشکده ریاضی و کامپیوتر

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023